

CONSACRAT ANIVERSĂRII A 75-A DE LA FONDAREA USMF "NICOLAE TESTEMIȚANU" octombrie **COMPARATIVE EFFICIENCY OF DETERGENT-BASED DECELLULARIZATION PROCEDURES IN VASCULAR TISSUE ENGINEERING** <u>Tatiana Malcova¹, Tatiana Baluțel¹, Valentina Huștiuc¹, Tatiana Globa^{1,2}, Victor Popescu³, Viorel Nacu¹</u> ¹Laboratory of Tissue Engineering and Cell Culture, ²Department of histology, cytology and embriology, ³Laboratory of Genetics, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova

Introduction

<u>Atherosclerosis</u> is the leading cause of mortality and morbidity across the world. Conventional therapies available today offer good clinical results, however, the <u>"gold standard" treatment</u> is considered <u>surgical bypass</u> It assumes blood flow improvement reconnecting blood vessels with *specific vascular conduits*, biological or synthetic ones.

Studies concerning the evaluation of different grafts' patency rates have been conducted already. They have shown satisfactory results for replacement of large- and medium-diameter arteries. Nevertheless, <u>the optimal</u> vascular substitutes appliable to small-diameter vessels are still in the research and development.

Considering these limitations, high attention has been focused on manufacturing vascular grafts by tissue **Tissue Engineered Vascular Graft (TEVG)** engineering techniques (TEVGs). A number of different Fig. 1 **TEVGs manufacture using** approaches have been taken in this research field. They can be broadly categorized into <u>scaffold-based methods</u> using synthetic or natural materials and decellularized natural matrix techniques (Fig. 1).

Keywords

Tissue engineering, vascular graft, extracellular matrix, decellularization

Purpose

To evaluate the effect of the detergents widely used in tissue decellularization on histology of blood vessels and to understand their potential impact on functional changes.

Material and methods

Fresh porcine aortas (PAs: lenght 70–170 mm, lumen diameter 14–25mm, wall thickness 2–3mm) were obtained from a local meat. The samples were cleaned off excess connective tissue and fats and rinsed in ddH₂O for 24h (Fig. 2).

The research protocol included 5 experimental and one control group (Tab. 1).

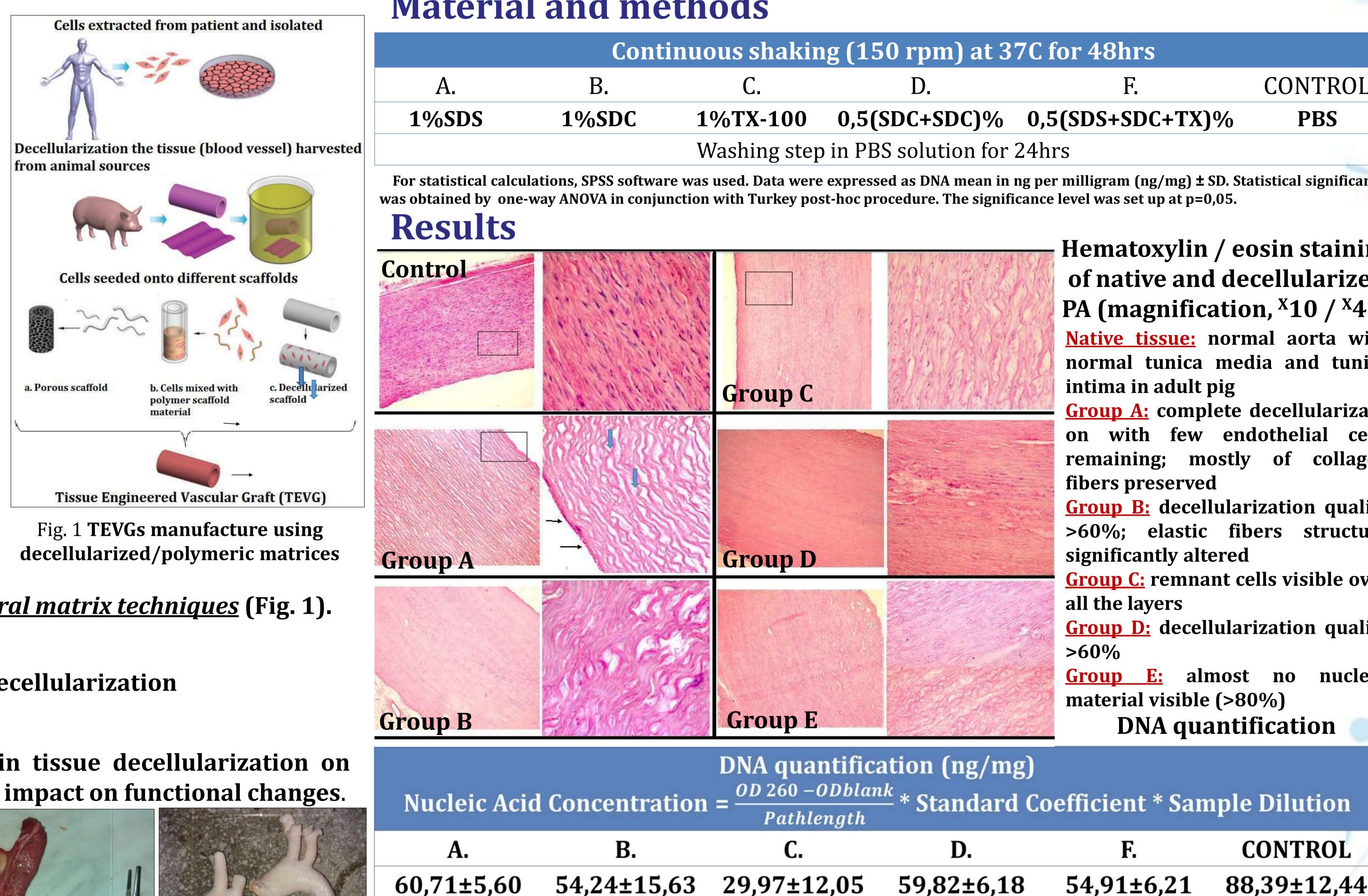


Fig. 2 Fresh porcine aortas

Material and methods

Continuous shaking (150 rpm) at 37C for 48hrs						
A.	B.	C.	D.	F.	CONTROL	
%SDS	1%SDC	1%TX-100	0,5(SDC+SDC)%	0,5(SDS+SDC+TX)%	PBS	
		Washing ster	o in PBS solution for 2	24hrs		

For statistical calculations, SPSS software was used. Data were expressed as DNA mean in ng per milligram (ng/mg) ± SD. Statistical significance was obtained by one-way ANOVA in conjunction with Turkey post-hoc procedure. The significance level was set up at p=0,05.

<u>All DC groups had significantly lower DNA content (p<0,05) compared to native tissue.</u> Conclusions

Detergent-based decellularization technique were found to be more effectively in cellular components elimination. However, biocompatibility and mechanical properties assessments should be carried out in future studies.

	Hematoxylin / eosin staining					
	of native and decellularized					
1 A	PA (magnification, ^x 10 / ^x 40)					
ム人	Native tissue: normal aorta with					
	normal tunica media and tunica					
1	intima in adult pig					
-	<u>Group A:</u> complete decellularizati-					
	on with few endothelial cells					
111	remaining; mostly of collagen					
1010	fibers preserved					
12 - M	<u>Group B</u>: decellularization quality					
1.12.1	>60%; elastic fibers structure					
110	significantly altered					
1	<u>Group C:</u> remnant cells visible over					
Sec.	all the layers					
NS 19	<u>Group D</u> : decellularization quality					
Ser. Ca	>60%					
1 to a	<u>Group E:</u> almost no nuclear					
The	material visible (>80%)					
12	DNA quantification					

ird Coefficient * Sample Dilution					
	F.	CONTROL			
,18	54,91±6,21	88,39±12,44			
<0 0 ¹	5) compared to	nativa ticcua			