

Author(s), affiliation

Introduction

Micro-RNAs (miRNAs) were defined as small endogenous non-coding RNAs consisting of 18-24 nucleotides, responsible for the gene expression and involved in many cellular processes (Figure 1). The expression of the enzyme plasminogen activator inhibitor-1 (PAI-1), the modulator thrombosis, fibrinolysis, of main inflammation, angiogenesis and atherogenesis, encoded by SERPINE-1 locus, has been recently discovered to be inhibited or stimulated by different miRNAs [1]. The exact role of miRNA as biomarkers and treatment targets fibrinolysis disorders remains the subject of ot continuous research.

Keywords

fibrinolysis, miRNA.

Purpose

To study the literature data regarding miRNA in the processes role of fibrinolysis for identifying the possil diagnostic and therapeutic strategies.

Material and methods

There were analyzed: Wiley Online Crossref, Google Scholar databases, usin combination of the terms "miRN fibrinolysis", "regulation of plasm activator inhibitor-1" in the articles pub between years 2012-2020.

CONSACRAT ANIVERSĂRII A 75-A DE LA FONDAREA USMF "NICOLAE TESTEMIȚANU"

THE ROLE OF MICRO-RNA IN FIBRINOLYSIS

Dumitraș Mariana, Ambros Ala

"Nicolae Testemițanu" State University of Medicine and Pharmacy, Chair of biochemistry and clinical biochemistry, Chisinau, Republic of Moldova

Figure 1. Micro-RNA (miRNA) mechanisms of target regulation [2]

Table 1. miRNAs as biomarkers			
	and treatment targets		
	miRNAs activity	The effect descovered	
the of ible	miR-421 and miR-30c, by exerting direct inhibition in the 3-UTR of SERPINE-1 mRNA	Inhibition of PAI-1 in human umbilical vein enothelial cell (HUVECs) and pulmonary endothelial cells [4]	
library, ing the NA in	Serum elevation of miR- 320a, miR-320b, miR-424- 5p, miR-532 in deep vein thrombosis (DVT)	Potential biomarker of DVT [5]	
ninogen blished	Overexpression of miR-150, miR-126, miR-21 Inhibition of miR-483-3p	Resolution of experimental venous thrombosis [6, 7, 8]	

ers

Results

Figure 2. Micro-RNAs reported to regulate coagulation and fibrinolysis pathways [3]

PAI-1 nbilical al cell

ells [4] marker

Conclusions

A number of miRNAs were suggested both as potential biomarkers for the diagnosis of thrombotic disorders, and as a treatment perspective for venous thrombosis.

Bibliography

- Iwaki T., Urano T., Umemura K. PAI-1, progress in under-standing the clinical problem and its aetiology. Br J Haematol 2012; 157: 291-8.
- Teruel-Montoya R., Rosendaal F. R., Martínez C. MicroRNAs in hemostasis. J Thromb Haemost 2015; 13: 170– 2.
- Morelli V.M., Braekkan S. K., Hansen J. Role of microRNAs in Venous Thromboembolism. Int. J. Mol. Sci. 2020, 21(7), 2602; https://doi.org/10.3390/ijms21072602
- Marchand A., Proust C., Morange P.E., et al. miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS One 2012; 7:e44532.
- Jiang Z., Ma J., Wang Q., et al. Combination of circulating miRNA-320a/b and D-dimer improves diagnostic accuracy in deep vein thrombosis patients. Med. Sci. Monit. 2018, 24, 2031–2037. Kong L., Hu N., Du, X., et al. Upregulation of miR-483-3p contributes to endothelial progenitor cells
- dysfunction in deep vein thrombosis patients via SRF. J. Transl. Med. 2016, 14, 23. Wang W., Zhu X., Du X., et al. MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells
- in deep venous thrombosis by targeting SRCIN1. Microvasc. Res. 2019, 123, 35–41. Du X., Hong L., Sun L., et al. miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J. Transl. Med. 2019, 17, 270.

octombrie 2020