UNDERSTANDING THE GENETIC CHARACTERISTICS OF MOLDOVAN MULTIPLEX EPILEPSY FAMILIES USING WHOLE EXOME SEQUENCING

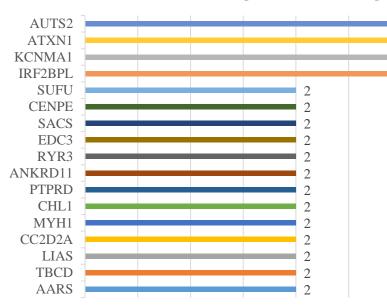
Gasnas Daniela1, Chelban Viorica2, Groppa Stanislav3

1 Nicolae Testemitanu State University of Medicine and Pharmacy, Laboratory of Neurobiology and Medical Genetics, Chisinau, Republic of Moldova 3 Nicolae Testemitanu State University of Medicine and Pharmacy, Department of neurology no.2, Chisinau, Republic of Moldova

ORCID number:

SCOPUS ID:

Background:


- Although several theories have been proposed to explain the origin of epilepsy, its cause is still unknown in about half of cases.
- In most cases, the link between a gene and the condition is not yet clear and studying multiple affected members of a family is • It was followed by a descriptive analysis of the data. needed ..

Purpose of the study:

• To estimate the genetic biomarkers of multiplex epilepsy families 0% from the Republic of Moldova and their role in epileptogenesis.

Fig. 3 Most involved genes

3

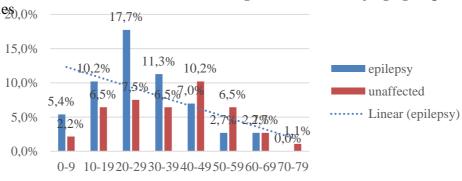
Conclusions:

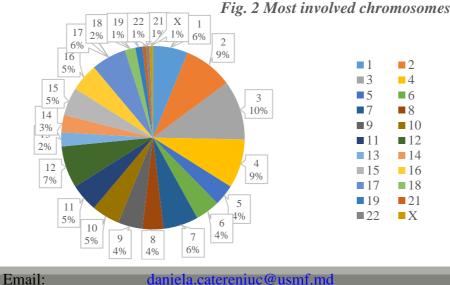
Contact info:

Phone:

Name/Surname:

• The preliminary results of our studies are truly revolutionary, as they represent an absolute novelty for the country and the eastern "genetically virgin" territories..


GASNAS Daniela


+373 69 68 30 98

Material and methods:

• Whole Exome Sequencing (WES) was performed on the first 11 epilepsy families from a newly started National Epilepsy Registry (Fig. 2, 3).

Fig. 1 Distribution by age groups

daniela.catereniuc@usmf.md

0000-0003-2696-5444

57216928630

Results:

- Our National registry counts now 74 families including 186 members: subjects with epilepsy (106) and the control group (80 healthy relatives). (Fig.1)
- We identified potential biomarkers for familial epilepsy, via Whole Exome Sequencing, as summarized bellow.
- Subjects will continue to be recruited and the Registry updated.

CATEGORY	POTENTIAL BIOMARKER
Proband's sex	Female (39%)
Seizure onset	Generalized (63,6 %)
Seizure type	Motor variants (55%)
Awareness	Impaired (75.5 %)
Most involved	1, 2, 3, 4, 7, 12, and 17 (Fig.2)
chromosomes	
Most involved	AUTS2, ATXN1, KCNMA1, IRF2BPL, SUFU,
genes (Fig. 3)	CENPE, SACS, EDC3, RYR2, ANKRD11
	PTPRD, CHL1, MYH1, CC2D2A, LIAS, TBCD
	and AARS
Seizure onset	• 1-5 years – the chromosomes 3, 4, 7, 9 and RYR3.
age correlated	DUSP6, EFHC1, CC2D2A genes;
with WES	•6-10 years - the chromosomes 2, 3, 4, 16 and
	KIF1A, PTPRD, RECQL4, MACF1, APOB
	BCAT1, EML1, PREPL, GMPPB, LRPPRC
	AARS, CENPE, WDR19, MEGF10, WFS1
	CKAP2L, XYLT1 genes.
	•11-15 years – chromosomes 12, 15, 17 and
	ARNT2, CCND2, CNTN4, CTNNA2, EDC3
	MUT, MYH1, PTPN11, SLC12A6, SLC25A19
	SUFU genes.

