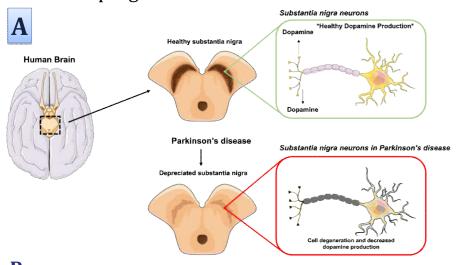


CONFERINȚA ȘTIINȚIFICĂ ANUALĂ CERCETAREA ÎN BIOMEDICINĂ ȘI SĂNĂTATE: CALITATE, EXCELENȚĂ ȘI PERFORMANȚĂ

EPIGENETICS IN PARKINSON'S DISEASE

Braicov Daniela


Scientific adviser: Capcelea Svetlana

Department of Molecular Biology and Human Genetics, USMF "Nicolae Testemitanu"

Introduction

Parkinson's disease (PD) is an extremely complex, multifactorial neurodegenerative disease with defects of several mechanisms involved in the

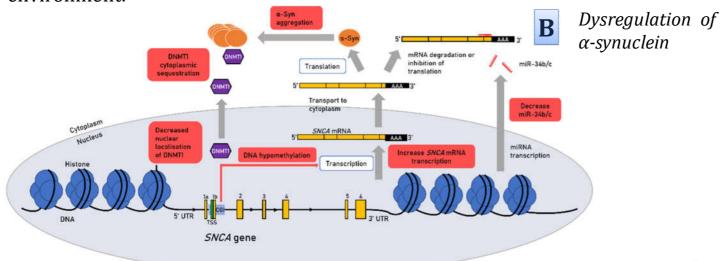
onset and progression of the disease.

Purpose

Analysis of the role of epigenetic changes in the:				
etiology	pathogenesis	manifestation	progression	

DNA methylation, histone changes and altered microRNA expression are being intensively investigated due to their possible involvement in PD.

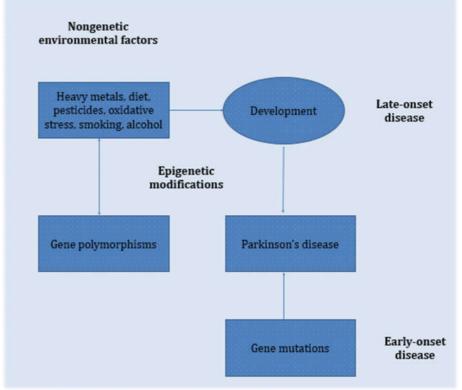
Keywords


Parkinson's disease, epigenetics, neurodegeneration, dopamine

Material and methods

Review of the results of studies on the role of epigenetics in PD published in: – PubMed; - Medscape; - Elsevier.

Results


Epigenetic modulation is responsible for inducing differential gene expression, which is essential for regulating neurogenesis and adaptation to the environment.

C Epigenetic mechanisms and the genes they affect, involved in the development of PD

Epigenetic mechanism	Modification	Function	
DNA hypermethylation	MAPT	Involved in age at disease onset and disease status in idiopathic PD	
	PCG-1α	Dysregulation of inflammatory signaling	
DNA hypomethylation	SNCA gene	Accumulated α-synuclein mitochondrial dysfunction	
	PARK2 gene	Unknown	
MicroRNA	miR-34b miR-34c	reduction Parkin (encoded by PARK2) expression levels and cell viability along with mitochondrial dysfunction and altered oxidative stress	
	miR-153 miR-7	downregulate SNCA expression	
	miR-133b	Regulates the maturity and function of the midbrain dopaminergic neurons	
	miR-205	Regulates the expression of LRKK2	
Histone deacetylation	LRRK2 gene	Neuronal cytotoxicity	

Relation between the type of factors (environmental factors/genetic factors/ their combination) and the progression of PD (early/late onset)

Conclusions

The etiology and pathogenesis of PD is genetically, epigenetically and environmentally conditioned. Genomic and epigenomic discoveries in PD have allowed the development of targeted therapies for maintaining/restoring the epigenetic profile of neurons.