evaluated before and after surgery. Roughness of bared DM was measured by atomic force microscopy (AFM) comparative to the roughness of the cut, made by mechanical microkeratome (Moria II).

Results: At 12 months observation after penetrating keratoplasty UCVA was 0.37 ± 0.18 and 0.21 ± 0.12 (p=0.023), BSCVA was 0.81 ± 0.15 and 0.47 ± 0.17 (p=0.01) in main and control group, respectively. Postoperative astigmatism was equal to 3.25 ± 1.2^{D} in main group and was higher in the control one -4.5 ± 1.3^{D} (p=0.024). EC loss was equal in two groups -18.9% (main) and 21.4% (control, p>0.05). After the lamellar procedure at 6 months observation UCVA was 0.21 ± 0.17 and 0.12 ± 0.13 (p=0.031), BSCVA was 0.54 ± 0.15 , and 0.42 ± 0.14 (p=0.023) in main and control group, respectively. At 12 months UCVA was 0.29 ± 0.19 and 0.26 ± 0.2 (p>0.05), BSCVA was 0.66 ± 0.15 and 0.54 ± 0.18 (p>0.05), respectively. Part of patients, achieved BSCVA ≥0.5 was 97.1% in the main group and 71.4% in the control one (p=0.013). Postoperative astigmatism was equal to 3.7 ± 1.4 D in the main group and was higher (p=0.04) in the control one (4.8 ± 1.9 D). EC loss (7.4 and 6.1%, p>0.05), central graft thickness (506 ± 20 and 521 ± 28 um, p>0.05) and residual recipient's tissue thickness (25 ± 4 and 25 ± 5 um, p>0.05) were comparable. CH and CRF had improved from 6.6 ± 1 and 4.8 ± 1.1 mm Hg to 9.9 ± 0.7 and 9.3 ± 0.8 mm Hg (p<0.001) in the main group. AFM showed roughness mean square (RMS) of DM=92\pm6.3 nm, comparable to RMS of microkeratome-assisted cut of 120 ± 19 nm (p>0.05).

Conclusions: Introducing femtosecond laser techniques resulted in faster visual recovery, lesser postoperative astigmatism and lager part of patients, achieved BSCVA \geq 0.5, comparative to traditional methods.

Key words: keratoconus, femtosecond laser, penetrating keratoplasty, deep anterior lamellar keratoplasty, big-bubble technique, atomic-force microscopy.

CROSSLINKING UVTM – X EPI-ON

Bilba Rodica, Chiriac Vera, Toncoglaz Cristina, Tumuruc Irina, Coșulă Cristina Medical Centre "Oculus prim", Chisinau

Keratoconus is a bilateral noninflammatory conelike ectasia of the cornea. Corneal Collagen Cross linking with riboflavin $(UV^{TM}-X)$ strengthens the intrinsic biomechanical property of the cornea using ultraviolet A (UVA) and riboflavin 0.1%.

Aim: To evaluate the clinical usefulness of crosslinking $-UV^{TM}$ for stopping the progression of keratoconus.

Method: Clinical prospective study, that included 82 eyes with moderate or advanced progressive keratoconus (K: 48 - 72 D). Two techniques of treatment were performed: in 42 eyes - UVTM-X epi-off and in 40 eyes - UVTM-X epi-on. The first is accomplished with central corneal abrasion, riboflavin drops and exposure to UVA (365 nm, 3 mW/cm2) at 5 cm distance for 30 minutes. UVTM-X epi-on is performed without desepitalization of the cornea with balanced solution of riboflavin instilled for 20 minutes and UVA exposure (365 nm, 9mW/cm2) for 10 minutes. Postoperative examinations were carried over the course of 1 day, 1 week, 1, 3 and 6 months, including visual acuity, biomicroscopy, corneal topography, pachymetry, refractometry, keratometry.

Result: In all treated eyes, the progression of keratoconus was stopped. In 42 eyes (51,2 %) visual acuity was improved. The priority of $UV^{TM}-X$ epi-on tehnique results in absence of pain syndrome and fast postoperative recovery.

Conclusion: Crosslinking – UV^{TM} -X is a way for stopping the progression of keratoconus.