Scaffolds for bone tissue regeneration

Jian Mariana¹, Cobzac Vitalie^{1*}, Vereștiuc Liliana³, Butnaru Maria³, Nacu Viorel¹

¹Laboratory of Tissue Engineering and Cellular Cultures, *Nicolae Testemitanu* State University of Medicine and Pharmacy, Chisinau, Moldova.

²Chair of oro-maxillo-facial surgery and oral implantology *Arsenie Gutan*, *Nicolae Testemitanu* State University of Medicine and Pharmacy, Chisinau, Moldova.

³Center for training and research in tissue engineering and regenerative medicine, University of Medicine and Pharmacy *Gr. T. Popa*, Iasi, Romania.

Introduction. There are many types of scaffolds prepared in order to regenerate bone tissue defects [2]. In performed research were tested matrices of natural origin.

Materials and methods. Collagen sponges were obtained from collagen extracted from the bovine Achilles tendon [3], which were cross-linked with 25% Glutaraldehyde (GA) vapors, and with 25 mM Riboflavin solution under the action of UV-A rays during one hour. Rabbit femoral and iliac wing bones were demineralized in 0.6 M HCl solution. Bone cells (BC) and mesenchymal stem cells (MSC) were isolated from rabbit [4, 5], to perform the MTT assay and to evalulate cellular adhesion on scaffolds with DAPI. The ultrastructure of the scaffolds was analyzed by scanning electron microscopy (SEM).

Results. The MTT assay on BC and MSC showed a high cellular activity. Also, seeded cells had a good adhesion and proliferation on the prepared scaffolds at 7 and 14 days of culture. At SEM examination was determined a high porosity of both cross-linked sponges, and thin walls (2-4 μ m) with many small cavities in them, through which the pores communicate. However, it is determined that the pores of sponges cross-linked with riboflavin generally have larger sizes (70-220 μ m) compared to those cross-linked with GA (50-150 μ m) (p <0.01). Also semnificative difference (p <0.01) between pore size was determined in demineralised femoral (25-80 μ m) and iliac wing bones (140-520 μ m), and with different wall thickness (p <0.01).

Conclusions. The obtained scaffolds had a good biocompatibility and a very nonhomogeneous structure.

Keywords: collagen, demineralised bone, scaffolds.

Bibliography:

- 1. Jian M., et al. Dispozitive și metode brevetate cu utilizare în ingineria tisulară . INTELLECTUS. 2022; 1:94-100. doi:<u>https://doi.org/10.56329/1810-7087.22.1.09.</u>
- 2. Shikimaka O., et al. Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects. Beilstein J. Nanotechnol. 2022; 13:1490–1504. doi:10.3762/bjnano.13.123.
- Cobzac V., et al. The Cartilaginous Tissue Regeneration on Weight Bearing and Non-weight Bearing Surfaces of the Knee. In: IFMBE Proceedings. 2022; 87:334–341. doi: <u>https://doi.org/10.1007/978-3-030-92328-0_44</u>.
- 4. Jian M., et al. The procedure of bone cells obtaining, culture and identification. IFMBE Proceedings. 2020;77:595–599. doi: https://doi.org/10.1007/978-3-030-31866-6_106.
- 5. Cobzac V., et al. An efficient procedure of isolation, cultivation and identification of bone marrow mesenchymal stem cells. Mold Med Journal. 2019; 62(1):35-41. doi: 10.5281/zenodo.2590011.