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Introduction

The endometrium has been an interest for scientists for 
decades, but its functional activity has yet to be discovered. 
In the endometrium, complex molecular interactions of 
biologically active substances take place in order to create 
optimal conditions for fulfilling its important function, 
implantation of the embrio and pregnancy development [1, 
2, 3]. With the modernization of medicine, subsequently, the 
knowledge about the structure and functional activity of the 
endometrium has been detailed and extended. Proliferative 
and secretory transformation of the endometrium during the 
menstrual cycle is a genetically determined process based on 
the balance of the interaction of steroidogenesis, angiogenesis 
and immunogenesis in the endometrium, starting from the 
intrauterine development of the fetus [3-6].

Ontogeny of the endometrium

Uterine embryo development begins in the fetus at 8–9 
weeks of age. The glandular component of the endometrium 
comes from the mucosal epithelium of the Muller canals, 
the cells of the adjacent mesenchyme serve as a source of 
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endometrial stroma and uterine muscle layer. At the begin-
ning of the development, the endometrium is represented 
by a small cylindrical epithelium, however, as the gestational 
age advances, the height of the endometrium increases, and 
from 18 weeks the formation of the first endometrial glands 
takes place. From 20 weeks of gestation, the active growth of 
the uterus is observed, which is associated with the devel-
opment of receptors and the sensitivity of the organ to the 
mother’s sex hormones, especially estrogens. From 24 weeks 
of pregnancy, the first signs of subnuclear vacuolization are 
observed in the endometrial epithelium, and the endometri-
um acquires the characteristics of a secretory tissue. Signs of 
well-defined secretion in the endometrium and endocervi-
cal epithelium are observed from the 28th week with a peak 
up to 35–36 weeks of gestation, when the placenta secretes 
estrogen and progesterone maximally [1, 7] .

The endometrium, regardless of age, has a thickness of 
0.5 to 1.5 mm, contains a significant number of cells (lym-
phocytes, fibroblasts, plasmocytes) and a small number of fi-
bers. In the neonatal period, the glandular component of the 
endometrium is represented by glandular “dives”, and only 
from the first year of life, the glands acquire the characteris-
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tics of a typical structure and their number increases. Until 
puberty, a significant growth and branching of the glands is 
observed without increasing the thickness of the endome-
trium [1, 8].

Menstrual cycle in the endometrium

With the onset of puberty, in the endometrium there is 
a cyclical cascade, complex of molecular and neuroimmu-
noendocrine interactions under the control of the hypothal-
amus-pituitary-ovarian axis, which leads to the appearance 
of the genetically determined menstrual cycle. The endome-
trium is a complex and interconnected system consisting of 
glandular epithelium, stroma and vascular component [9].

From the early stage of the proliferation phase to the late 
stage of the phase of secretion the gland epithelium and stro-
mal cells are characterized by heterogeneity, which provides 
the processes of cell transformation. With the beginning of 
the proliferation phase, endometrial reepithelization begins 
from the process of migration of epithelial cells from the 
growing glands to the beginning of proliferative activity of 
stromal and epithelial cells. This process fully covers the en-
tire wound surface of the uterus, and there is a rapid restora-
tion of the functional layer [9-12].

The use of scanning electron microscopy of the men-
strual endometrium showed that epithelial cells arise from 
stromal mesenchymal cells in desquamated areas, and not 
only from epithelial glands, which suggests reprogramming 
of endometrial stromal cells even in the phase of menstrual 
decay [13, 14]. In this case, mesenchymal cells change their 
characteristics and become epithelial cells, this process is 
known as the mesenchymal-epithelial transition (MET). Ev-
idence for this hypothesis was obtained in an experiment in 
mice using the cytoskeleton protein pancytokeratin and the 
vimentin stromal cell marker. Significant changes in MET 
were detected in endometrial cells 24 hours after progester-
one withdrawal [15, 16]. In was demonstrated the activation 
of proliferation processes in areas of damaged endometrial 
stroma under the influence of cytokeratin and osteopontin, 
similar to the MET process [16]. Therefore, it can be as-
sumed that the basal layer of the endometrium promotes 
reepithelization of the desquamated surface.

There is a reverse MET process – the epithelial-mesen-
chymal transition (EMT), which is necessary for wound 
healing and the development of fibrosis [17]. The role of 
EMT in the endometrium remains unclear, but it is likely 
that the balance of EMT and MET is of great importance 
for the processes of full repair of the endometrium in the 
desquamation phase. Strict control of these factors in the en-
dometrium enables the tissue to heal without scarring [18].

Vascular remodeling and angiogenesis

Within the myometrium, the arcuate arteries arise from 
the uterine and ovarian arteries, which in turn give rise to 
radial arteries. After crossing the endometrial – myometrial 
junction, they branch to form the basal (anastomosing) 
and spiral (terminal) arteries. The former supply the basal 
layer and the latter the functional layer of the endometrium. 

Branching of the spiral arteries occurs throughout the 
functional layer. Just below the surface they break up 
into a prominent subepithelial plexus, which drains into 
venous sinuses. Each spiral arteriole supplies tissue with an 
approximate endometrial surface area of 4 – 9 mm [19, 20].

Unlike other vascular beds, the endometrial vasculature 
undergoes cycles of growth and regression during the men-
strual cycle [21]. The proliferative phase growth in endo-
metrial thickness is accompanied by growth of the vascular 
tree [22]. By the middle of the late proliferative phase the 
sprouting terminal branches of the spiral arteries become 
somewhat coiled. By the middle of the secretory phase the 
spiral arteries ascend from the basal to the functional layer 
[20, 22].

There are two main mechanisms for the formation of new 
blood vessels: vasculogenesis, de novo development of ves-
sels and angiogenesis, the creation of new microvessels from 
pre-existing vessels. Angiogenesis may occur by sprouting/
branching or elongation, in addition, circulating endothelial 
cell progenitors may be incorporated into existing vascula-
ture to contribute to these processes. For perfusion of grow-
ing tissue, adequate angiogenesis is required. Angiogenesis 
is thought to occur in three phases of the menstrual cycle: 
during menses, when vascular repair is occurring, during 
the proliferative phase, coinciding with the estrogen-driven 
rapid tissue growth, and during the secretory phase, associ-
ated with the elaboration of the spiral arterioles. Angiogene-
sis normally involves endothelial cell activation, degradation 
and breakdown of the basal lamina, migration and prolif-
eration of the endothelial cells, fusion of sprouts, and tube 
formation. By the 5–6th day of the menstrual cycle, estradiol 
synthesis is increasing by growing follicles, which directly 
stimulates endometrial neovascularization by expression of 
angiopoietin-2 (Ang-2) in the endothelium. Estrogen does 
not significantly affect endometrial repair in the early stage 
of the proliferation phase. However, during the middle and 
late stages of the proliferation phase, when the main mecha-
nism of angiogenesis is an increase in vessel length, estrogen, 
together with VEGF (vascular endothelial growth factor), 
synthesized by stromal cells, provides estrogen-dependent 
regeneration and increased vascular permeability [21, 23, 
24 ]. In an experiment on animals undergoing ovariectomy, 
three peaks of the effect of VEGF on the endometrium were 
shown: in the early stage of the proliferation phase on the 
surface epithelium, in the middle stage of the proliferation 
phase on stromal fibroblasts and during the late stage of 
the secretion phase on the glandular component [23]. The 
significance of the vascular component in endometrial re-
generation has been confirmed by studies of stromal growth 
factor (SDF-1) via pro-fibrotic CXCR4 or pro-regenerative 
CXCR7 receptors. Stromal growth factor (SDF-1) is present 
in all phases of the menstrual cycle, and CXCR4 expression 
is expressed in the early proliferative phase in both epithelial 
and endothelial cells [25]. 

The physiologic consequences of angiogenesis are re-
flected in changes in endometrial blood flow. By measuring 
the clearance of radioactive xenon gas, highest endometrial 
perfusion was reported between days 10 and 12 and days 21 
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and 26 of the cycle. Microvascular perfusion has been as-
sessed by laser Doppler flowmetry with transvaginal place-
ment of a fiberoptic probe into the uterine cavity. With use 
of this technique, endometrial perfusion was found to be 
highest during the proliferative phase and the early secre-
tory phase, not too dissimilar from the finding based on xe-
non clearance. Uterine blood flow is greatest in the fundus, 
and higher flow rates are associated with better outcomes 
in assisted reproduction. Notably, diminished uterine blood 
flow has not been found in the perimenstrual period, but 
these methods cannot easily identify localized areas of va-
soconstriction [26].

Immunology of the endometrium

The uterus is an immunologically privileged organ: 
it can accommodate tissue invasion by immunologically 
semiforeign placental cells, yet maintain mucosal immune 
defenses against ascending foreign organisms, and provide 
a system to efficiently clear the endometrial detritus that 
results from menstruation. Remarkably, the endometrium 
also uses mechanisms of acute inflammation during nor-
mal, hormonally regulated physiologic processes, including 
menstruation and embryo implantation. These acute inflam-
matory episodes are quickly resolved, avoiding the conse-
quence of scarring and dysfunction. Despite the description 
of critical active processes to resolve inflammation in other 
tissues and the clear relevance to endometrial physiology 
and pathophysiology, mechanisms that resolve endometrial 
remain largely unstudied [27-29].

The complex requirements of uterine immunity and 
tolerance use overlapping and redundant mechanisms 
dependent on both innate and adaptive branches of the 
immune system. The onset and development of pregnancy 
is inextricably linked with the presence of physiological 
and pathological inflammatory-immune reactions in the 
endometrium and directly in the nidation zone [30-32]. One 
of the important features of a woman’s reproductive tract is 
the constancy of the physiological microbial population and 
the prevention of inflammatory reactions [33]. Endometrial 
immune processes, as with other uterine functions, but 
unlike those for other mucosal immune sites, are markedly 
influenced by cyclic and pregnancy-specific changes in sex 
steroid concentrations and possibly by human chorionic 
gonadotropin [34, 35].

The endometrium is populated by bone-marrow derived 
immune cells, as well as endometrial epithelial and stromal 
cells that demonstrate immune functions [36]. As is the case 
for many epithelial cells, endometrial epithelium express 
members of the Toll-like receptor family (TLR2 to 6, 9, and 
10), which detect pathogen products and trigger a cellular 
response to these “foreign” molecules, including peptidogly-
cans from Gram positive bacteria (TLR2), lipopolysaccha-
ride from Gram negative bacteria (TLR4), and unmethylated 
CpG islands found in bacterial DNA (TLR9) [33]. The en-
dometrium also produces host defense molecules, defensins, 
as well as cytokines and chemokines. Uterine lymphoid and 
myeloid cells play roles in tissue defense, immune modula-
tion, angiogenesis, and tissue remodeling [37-39]. These 

cells are present in the fallopian tubes, uterus, and cervix, 
with the fallopian tubes and uterus containing a higher pro-
portion of leukocytes than the cervix and vagina [40].

The endometrial innate and adaptive immune systems 
are regulated by steroid hormones. For example, progester-
one induces a local Th2-type cytokine response in the uter-
us, which includes an increase in IL-4, IL-5, and IL-15 and 
downregulation of the IL-13 receptor α2, which is a nega-
tive regulator of the anti-inflammatory cytokine, IL-13, and 
powerful inhibitor of the Th2 response [35, 41, 42]. The Th2 
response is believed to counter proinflammatory processes 
in the endometrium that could lead to rejection of the em-
bryo. Steroid hormone-directed alterations in endometrial 
chemokine production influence the trafficking of blood 
leukocytes in the reproductive tract. Further, actions of pro-
gesterone are important in the overall immune suppressive 
phenotype adopted by the receptive endometrium [33, 43]. 

During the secretory phase, there is a profound recruit-
ment of leukocytes into the endometrium starting in the 
perivascular locations around spiral arterioles and glandu-
lar epithelium [44]. The progesterone-induced alteration in 
endometrial cytokine/ chemokine production contributes to 
this recruitment [40]. Cytokines IL-1, IL-11, IL-15, LIF, and 
TGF-β regulate trafficking of leukocytes to the endometrium 
[44, 45]. IL-15 recruits NK cells into the endometrium, and 
IL-15 knockout mice lack NK cells. Locally acting prosta-
glandins (PG), including PGE along with VEGF, modulate 
vascular permeability [46-49]. Cyclooxygenase-2 (COX-2), 
a rate limiting enzyme that regulates the biosynthesis of 
PGE2, is critical to implantation in the mouse, and in animal 
models, PG are required for initiation and maintenance of 
decidualization. Blockade of COX-2 prevents decidualiza-
tion in mice and clearly plays a role in endometrial function 
surrounding pregnancy, with reduced COX-2 associated 
with implantation failure [50-52].

The immune component of the mucous membrane of the 
female genital tract in different parts of the genital tract is 
represented by the predominant population of T cells, mac-
rophages / dendritic cells, natural killer cells (NK), neutro-
phils and mast cells [33, 37]. Macrophages (CD68), plasmo-
cytes (syndicans) and B cells are present in the endometrium 
at all stages of the menstrual cycle in small quantities. Also 
during the proliferative phase, syndicans induce angiogen-
esis [53, 54]. The basal layer of the endometrium contains 
true lymphoid follicles formed from germinal centers, the 
bright centers of which consist of B cells surrounded by T 
cells and an external halo of macrophages (CD14). In the 
late stage of the proliferation phase and in the phase of secre-
tion, lymphoid follicles increase in size, with B cells express-
ing CD19 and T cells expressing almost exclusively CD8 and 
extremely rare CD4 [44].

In the functional layer of the endometrium of the pro-
liferation phase, there are predominantly cytotoxic T-lym-
phocytes (CD8 +), which have increased cytolytic activity 
compared to the secretory phase of the cycle. Moreover, the 
suppression of the cytolytic activity of CD8 + is noted only 
in the secretory endometrium and fallopian tubes, in con-
trast to the cervix. The content of the number of cytotoxic 
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T-lymphocytes (CD8 +) and T-helpers (CD4 +) in the nor-
mal endometrium is up to 10 cells in the field of view, B-lym-
phocytes (CD20 +) up to 3 cells in the field of view [44]. An 
increase in the number of cells of cytotoxic T-lymphocytes, 
B-lymphocytes and the presence of plasmocytes (CD138 +) 
indicates the presence of chronic endometritis [46]. The pro-
cess of decidualization of the endometrial stroma is charac-
terized by a limiting effect on inflammatory processes in the 
functional layer, while the basal layer remains intact, which 
is crucial for effective reparative processes of the endome-
trium. In addition, progesterone blocks the activation of 
metalloproteinases (MMP) during the secretory phase of the 
cycle [55, 56].

The immunological cell composition of the endometrial 
secretory phase is represented by NK cells that express sur-
face receptors CD56 +, CD16 +, CD3 + and are phenotypi-
cally different from peripheral blood NK cells. An increase 
in CD56 + during the middle stage of the secretion phase 
with predominantly periglandular and perivascular localiza-
tion is associated with maintaining the immune tolerance of 
the mother’s body to the onset and developing pregnancy 
[44, 56]. By the end of the secretion phase in the endome-
trium, the population of neutrophilic leukocytes increases 
significantly (up to 7–15%), which contain high levels of 
MMP for initiating endometrial decay. White blood cells do 
not have estrogen and progesterone receptors and penetrate 
the endometrium by chemotaxis in response to physiologi-
cal and pathological inflammatory reactions in the tissue 
[44]. A feature of neutrophils in this period is resistance to 
apoptosis and hypoxia under the influence of inflammatory 
mediators, which enhances tissue damage [45, 46].

Progesterone, in addition to secretory transformations of 
the endometrium, also affects the contractility of the myo-
metrium. A decrease in progesterone receptors expression in 
the late stage of the secretion phase leads to activation of the 
myometrium and an increase in contractile activity in the 
menstrual phase, while the level of progesterone in the blood 
serum does not correlate with the concentration of proges-
terone in the myometrium [12, 27, 28]. In the desquamation 
phase, an excessive or prolonged inflammatory response can 
lead to significant tissue damage and polymenorrhea, while 
the level of tumor necrosis factor and pro-inflammatory 
cytokines increases, and expression of cyclooxygenase-2 
(COX-2) mRNA also increases [31]. 36 hours after the onset 
of menstruation in the endometrium, reparative processes 
begin. Thus, the combination of molecular, endocrine, bio-
chemical, immunological factors leads to a complete trans-
formation of the endometrium during the menstrual cycle. 

An immunotolerance maternal immune response is es-
sential for the acquisition of endometrial receptivity and the 
success of pregnancy [57]. Factors that support a more sup-
pressed immune environment, including the recruitment of 
T regulatory cells (Tregs) and a shunting away from a pro-
inflammatory, Th1/Th17 responses are central to our under-
standing of infertility and pregnancy loss associated with 
various inflammatory conditions.

Conclusions

The human endometrium undergoes complex and dy-
namic changes during the menstrual cycle. Thus, the combi-
nation of molecular, endocrine, biochemical, immunological 
factors leads to a complete transformation of the endometri-
um during the menstrual cycle. Secretory transformation of 
the endometrium with an appropriate ratio and distribution 
of estrogen and progesterone receptor expression, complete 
angiogenesis and immunological balance determine implan-
tation, placentation and pregnancy development. 
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