THE ROLE OF miR-152-5p IN RENAL TRANSPLANTATION

Cojocaru Madalina¹, Ambros Ala¹

¹Department of Biochemistry and Clinical Biochemistry, Nicolae Testemitanu State University of Medecine and Pharmacy, Chisinau, Republic of Moldova.

Introduction. miR-152-5p is a microRNA involved in the regulation of gene expression at the posttranscriptional level, primarily expressed in hematopoietic cells. It impacts the regulation of genes involved in T cells and macrophage activation, making it an important biomarker for monitoring transplant rejection. In the context of kidney transplantation, it plays a significant role in modulating the immune response, preventing allograft rejection, and slowing the progression of chronic lesions such as fibrosis or chronic allograft nephropathy.

Materials and Methods. A literature review was conducted using PubMed, BioMed Central and the Cochrane Library, alongside the analysis of international publications.

Results. Recent studies have demonstrated that by inhibiting DNMT1 (DNA methyltransferase 1), miR-152-5p blocks T cell activation and reduces the production of pro-inflammatory cytokines associated with acute allograft rejection (IL-6, TNF- α). Additionally, by inhibiting pro-apoptotic genes (BIM, CASP3), it protects renal cells from apoptosis. miR-152-5p has also been shown to provide protection against fibrosis and chronic renal lesions by suppressing the expression of TGF- β 1, a key mediator of tubulointerstitial fibrosis and chronic allograft nephropathy. Low levels of miR-152-5p in blood, urine, or renal biopsies have been identified in patients with progressive renal fibrosis and impaired kidney function, and it has ben associated with a high risk of chronic allograft rejection. Furthermore, miR-152 mitigates oxidative stress and inflammation by inhibiting reactive oxygen species and reducing NF-kB expression, providing protection against ischemia-reperfusion injury. Moreover, the use of miR-152-5p mimetics can reduce inflammation and fibrosis in the renal allograft, while combined therapies with immunosuppressants such as tacrolimus or mycophenolate allow for dose reduction and minimization of adverse effects.

Conclusions. miR-152-5p is a microRNA involved in immune response regulation and inflammation, serving as a promising regulator in kidney transplantation with roles in immunomodulation, antifibrotic protection, and prevention of ischemia-reperfusion injury. Its use as a biomarker or therapeutic agent could revolutionize the management of kidney transplant patients by reducing the risk of rejection and improving allograft survival.

Keywords: microRNA, biomarker, transplant, graft, renal.