DC Field | Value | Language |
dc.contributor.author | Iapăscurtă, Victor | - |
dc.contributor.author | Belîi, Adrian | - |
dc.date.accessioned | 2021-12-06T09:40:45Z | - |
dc.date.available | 2021-12-06T09:40:45Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | IAPĂSCURTĂ, Victor, BELÎI, Adrian. Sepsis: current challenges and new solutions based on modern technologies. A clinical management approach: [poster]. In: Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021: culegere de postere. 2021, p. 117. | en_US |
dc.identifier.uri | http://repository.usmf.md/handle/20.500.12710/19153 | - |
dc.description | Valeriu Ghereg Department of Anesthesiology an Intensive Care no. 1, Nicolae Testemitanu SUMPh,
Institute of Emergency Medicine | en_US |
dc.description.abstract | Introduction:
Despite high associated mortality and high treatment costs,
sepsis remains difficult to diagnose. A recent supplement to
sepsis management are systems based on machine learning
(ML). Purpose:
Proof of concept and presentation of a MLbased clinical application for the early
prediction of sepsis. Material and methods:
The data comes from the publicly accessible database Early
Prediction of Sepsis from Clinical Data - the PhysioNet
Computing in Cardiology Challenge 2019 and include 40366
intensive care clinical cases, of which 7.26% are patients with
sepsis, and 92.74% - with other diagnoses. Exploratory data
analysis and data processing are performed in RStudio (R
programming language), and machine learning is based on the
H2O platform (www.h2o.ai). Results:
Based on the processing of
the large data set, an
intelligent system is built,
which allows the prediction
of sepsis 4 hours before the
onset and which can be
delivered as an application
for clinical use. The
performance metrics are:
accuracy - 0.91, specificity -
0.93 and sensitivity - 0.84. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Universitatea de Stat de Medicină și Farmacie ”Nicolae Testemițanu” din Republica Moldova, Institutul de Cardiologie | en_US |
dc.relation.ispartof | Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021 | en_US |
dc.subject | sepsis | en_US |
dc.subject | early diagnosis | en_US |
dc.subject | machine learning based systems | en_US |
dc.subject | clinical application | en_US |
dc.subject | COVID-19 | en_US |
dc.title | Sepsis: current challenges and new solutions based on modern technologies. A clinical management approach | en_US |
dc.type | Other | en_US |
Appears in Collections: | Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021: Culegere de postere
|