USMF logo

Institutional Repository in Medical Sciences
of Nicolae Testemitanu State University of Medicine and Pharmacy
of the Republic of Moldova
(IRMS – Nicolae Testemitanu SUMPh)

Biblioteca Stiintifica Medicala
DSpace

University homepage  |  Library homepage

 
 
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12710/19153
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIapăscurtă, Victor-
dc.contributor.authorBelîi, Adrian-
dc.date.accessioned2021-12-06T09:40:45Z-
dc.date.available2021-12-06T09:40:45Z-
dc.date.issued2021-
dc.identifier.citationIAPĂSCURTĂ, Victor, BELÎI, Adrian. Sepsis: current challenges and new solutions based on modern technologies. A clinical management approach: [poster]. In: Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021: culegere de postere. 2021, p. 117.en_US
dc.identifier.urihttp://repository.usmf.md/handle/20.500.12710/19153-
dc.descriptionValeriu Ghereg Department of Anesthesiology an Intensive Care no. 1, Nicolae Testemitanu SUMPh, Institute of Emergency Medicineen_US
dc.description.abstractIntroduction: Despite high associated mortality and high treatment costs, sepsis remains difficult to diagnose. A recent supplement to sepsis management are systems based on machine learning (ML). Purpose: Proof of concept and presentation of a MLbased clinical application for the early prediction of sepsis. Material and methods: The data comes from the publicly accessible database Early Prediction of Sepsis from Clinical Data - the PhysioNet Computing in Cardiology Challenge 2019 and include 40366 intensive care clinical cases, of which 7.26% are patients with sepsis, and 92.74% - with other diagnoses. Exploratory data analysis and data processing are performed in RStudio (R programming language), and machine learning is based on the H2O platform (www.h2o.ai). Results: Based on the processing of the large data set, an intelligent system is built, which allows the prediction of sepsis 4 hours before the onset and which can be delivered as an application for clinical use. The performance metrics are: accuracy - 0.91, specificity - 0.93 and sensitivity - 0.84.en_US
dc.language.isoenen_US
dc.publisherUniversitatea de Stat de Medicină și Farmacie ”Nicolae Testemițanu” din Republica Moldova, Institutul de Cardiologieen_US
dc.relation.ispartofConferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021en_US
dc.subjectsepsisen_US
dc.subjectearly diagnosisen_US
dc.subjectmachine learning based systemsen_US
dc.subjectclinical applicationen_US
dc.subjectCOVID-19en_US
dc.titleSepsis: current challenges and new solutions based on modern technologies. A clinical management approachen_US
dc.typeOtheren_US
Appears in Collections:Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021: Culegere de postere

Files in This Item:
File Description SizeFormat 
SEPSIS_CURRENT_CHALLENGES_AND_NEW_SOLUTIONS_BASED_ON_MODERN_TECHNOLOGIES.pdf1.41 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2013  Duraspace - Feedback