Research of antiexudative activity of erysimine and cymarine derivatives

*V. A. Nikolaev, B. A. Samura

Department of Pharmacotherapy, National University of Pharmacy, Kharkiv, Ukraine

*Corresponding author: nikolaev_vlad84@mail.ru. Manuscript received September 23, 2013; accepted December 05, 2013

Abstract

Comparative investigation of antiexudative activity-chemical structure dependence in a series of erysimine and cymarine derivatives was conducted on the model of carrageenan edema in white Wistar rats. The test substances were administered intragastrically at a dose of 5.0 mg/kg 30 minutes before introduction of the phlogogenic agent. Edema was caused by injection of 0.1 ml of 1% aqueous suspension of carrageenan. Antiexudative activity was determined by the degree of edema reduction in experimental animals as compared to control ones and expressed as a percentage. Diclofenac sodium was used as a comparative drug. The highest antiexudative activity among the erysimine derivatives was shown by 3,4'-O-propylidene-erysimine that reduced the carrageenan edema by 39.4% (p < 0.05) and provided an anti-inflammatory effect comparable with the effect of diclofenac sodium. Replacing ethyl radical with propyl, phenyl, methyl, phenylpropenoic and 3-methoxy-4-hydroxyphenyl radicals decreased the antiexudative activity from 39.4 % to 13.5 %. Derivatives of cymarine have a less pronounced antiexudative activity: ethanoliminocymarine reduced the volume of edema in rats by 29.9% (p < 0.05). Replacing ethanol with pyridine-para-methylene and urea reduced the antiexudative activity from 29.9% to 9.0%. Erysimine and cymarine derivatives are a promising group of organic compounds for further synthesis and pharmacological screening to be used as a basis for development of medicines with antiexudative activity.

Key words: antiexudative activity, erysimine, cymarine, 3,4'-O-propylidene-erysimine, ethanoliminocymarine.

Исследование антиэкссудативной активности производных эризимина и цимарина

Введение

В настоящее время возрос интерес к проблеме лекарственной регуляции воспалительного процесса, что способствовало расширению и углублению исследований патогенеза и патохимии воспаления. Регуляция воспалительного процесса, являющегося ведущим патогенетиче-

ским звеном в развитии многих заболеваний различного генеза, продолжает приковывать внимание, как исследователей, так и клиницистов. Одной из наиболее важных и сложных задач, стоящих перед врачом-ревматологом, является выбор эффективного и безопасного лечения для больных, страдающих ревматическими заболеваниями [1, 2].

В различных клинических ситуациях для фармакологической коррекции воспалительного процесса и облегчения страданий больного используются нестероидные противовоспалительные средства (НПВС) [3]. Современные представления о механизме действия НПВС в последние годы значительно расширились. В то время как неселективные НПВС таят угрозу развития язвенного поражения [4,5] вследствие снижения синтеза гастропротекторных простагландинов, селективные блокаторы циклооксигеназы-2 (ЦОГ-2) несут угрозу развития тромботических осложнений, в том числе инфаркта миокарда [6, 7].

В настоящее время из-за широкого применения НПВС в клинической практике гастропатии представляют серьезную медико-социальную проблему [2, 4]. Серьезность прогноза определяется реальной возможностью осложнения язвенного процесса кровотечением или перфорацией, относящимися уже к состояниям, угрожающим жизни с вероятностью летальных исходов, достигающей 26,7% и 28,5%, соответственно [3, 8].

У лиц пожилого возраста имеется риск непереносимости НПВС: сопутствующие заболевания и сопутствующая терапия, необходимость сочетания с препаратами, имеющими сходные реакции непереносимости [9].

Применение всех неселективных НПВС ведет к повреждению интерстиция почек. Известно, что при ревматоидном артрите – заболевании, требующем многолетнего непрерывного использования НПВС, по данным патологоанатомических исследований, частота интерстициального нефрита достигает 100% [10, 11]. Неселективные НПВС во многих случаях оказывают негативное влияние на функцию печени, особенно диклофенак натрия [12, 13].

В связи с побочными эффектами НПВС, ограничивающими их применение у большой группы пациентов, ведется поиск новых фармакологических веществ, обладающих противовоспалительными свойствами [2].

Результаты компьютерного прогноза возможных видов фармакологической активности производных цимарина и эризимина, выполненного нами с помощью программы PASS, а также анализ литературных данных показали высокую вероятность наличия противовоспалительных свойств у производных этих веществ.

На основании вышеизложенного проведено экспериментальное исследование антиэкссудативной активности производных цимарина и эризимина с целью отбора наиболее эффективных фармакологических веществ.

Работа выполнена в соответствии с планом научноисследовательских работ Национального фармацевтического университета по проблеме «Фармация» (номер государственной регистрации – 01860042142).

Цель данного исследования - изучение антиэкссудативной активности новых производных эризимина и цимарина в опытах на лабораторных животных.

Материал и методы

Антиэкссудативный эффект производных цимарина и эризимина изучили на модели острого воспалительного отека, вызванного субплантарным введением каррагенина.

При проведении экспериментальных исследований животные находились в стандартных условиях согласно нормам и принципам Директивы Совета ЕС по защите позвоночных животных, которых используют для экспериментальных и других научных целей [14].

Полученные данные обработаны общепринятыми методами вариационной статистики по критерию Стьюдента, с использованием программного обеспечения Windows XP и электронных таблиц Excel [15].

Опыты проводили на белых крысах линии Вистар обоего пола, массой 150-185 г. Исследуемые вещества вводили в дозе 5,0 мг/кг внутрижелудочно за 30 минут до введения флогогенного агента. Контрольным группам вводили дистиллированную воду. Через 30 минут под апоневроз задней лапки крысы вводили 0,1 мл 1% водной суспензии каррагенина. С помощью онкометра измеряли объем задней лапки у крыс до начала опыта и в момент максимального развития отека – через 4 часа. Антиэкссудативную активность определяли по степени уменьшения экспериментального отека у опытных животных по сравнению с контрольными и выражали в процентах. В качестве препарата сравнения использовали диклофенак натрия (ЕД₅₀ = 8 мг/кг). Степень угнетения отека рассчитывали по формуле:

% угнетение =
$$\frac{y_{\kappa} - y_{o}}{y_{\kappa}} \cdot 100$$
,

где: Y_{K} и Y_{O} – объем лапки в контроле и в опыте, соответственно [14, 15].

Результаты и обсуждение

Результаты исследования антиэкссудативной активности производных эризимина и цимарина на модели воспаления лапки у крыс, вызванного карагенином, представлены в таблице 1.

В механизме провоспалительного эффекта каррагенина в первые 3-4 часа важную роль играют кинины, в более поздний период – протеолитические ферменты (энзимы) и простагландины [16]. Установлено, что среди производных эризимина (табл. 2) наибольшую антиэкссудативную активность оказывало соединение 6 – 3',4'-О-пропилиден-эризимин, – которое в дозе 5 мг/кг уменьшало объем отека задней лапки у крыс на 39,4% (р < 0,05). Замена этилового радикала (соед. 6) на пропиловый (соед. 5), фенильный (соед. 3), метильный (соед. 2), фенилпропеновый (соед. 4) и 3-метокси-4-гидроксифенильный (соед. 1) приводила к снижению антиэкссудативной активности с 39,4% до 13,5%.

Таблица 1

Антиэкссудативная активность производных эризимина и цимарина

№ соединения	Доза, мг/кг	Объем лапки через 4 часа, мл	% по отношению к контролю	Антиэкссудативная активность, %
1	5,0	2,11 ± 0,05*	86,5	13,5
2	5,0	1,76 ± 0,03*	72,1	27,9
3	5,0	1,62 ± 0,03*	66,4	33,6
4	5,0	1,97 ± 0,05*	80,7	19,3
5	5,0	1,50 ± 0,02*	61,5	38,5
6	5,0	1,48 ± 0,03*	60,6	39,4
7	5,0	2,01 ± 0,07*	82,4	27,6
8	5,0	2,22 ± 0,06*	91,0	9,0
9	5,0	1,71 ± 0,03*	70,1	29,9
Диклофенак	8,0	1,31 ± 0,03*	53,7	46,3
Контроль	-	2,44 ± 0,04	100	-

Таблица 2

Примечание: * – достоверность при р < 0,05 по сравнению с контролем.

Производные эризимина

№ соединения	R	R ₁
Соед. 1	3-Метокси-4- гидроксифенил	Водород
Соед. 2	Метил	Метил
Соед. 3	Фенил	Водород
Соед. 4	Фенилпропен	Водород
Соед. 5	Пропил	Водород
Соед. 6	Этил	Водород

Среди производных цимарина (табл. 3) наибольшую антиэкссудативную активность оказывало соединение 9 - этанолиминоцимарин, - которое в дозе 5 мг/кг уменьшало объем отека задней лапки у крыс на 29,9% (р < 0,05). Замена этанолового радикала (соед. 9) на пиридин-параметиленовый (соед. 7) и мочевину (соед. 8) приводила к снижению антиэкссудативной активности с 29,9% до 9,0%.

Таблица 3

Производные цимарина

№ соединения	R	
Соед. 7	Пиридин-параметилен	
Соед. 8	Мочевина	
Соед. 9	Этанол	

Таким образом, большинство производных эризимина и цимарина проявляют антиэкссудативную активность и представляют интерес для дальнейшего целенаправленного синтеза и фармакологического скрининга с целью создания на их основе высокоэффективных противовоспалительных препаратов.

Анализируя полученные результаты экспериментального исследования антиэкссудативной активности и компьютерного прогноза возможных видов биологической активности производных эризимина и цимарина, можно предположить, что они являются перспективной группой, а их антиэкссудативный эффект реализуется путем модулирования синтеза ряда цитокинов: ингибирования экспрессии генов, ответственных за синтез провоспалительных цитокинов (ФНО-α, IL-1β, IL-6, IL-8),

а также усилением экспрессии генов, ответственных за синтез противовоспалительного цитокина IL-10 [17, 18].

Выводы

В ряду впервые синтезированных производных эризимина и цимарина наибольшую активность проявил 3',4'-О-пропилиден-эризимин, который уменьшал экспериментальный отек лапки у крыс на 39,4%.

Производные эризимина и цимарина являются группой органических соединений, перспективной для дальнейшего целенаправленного синтеза и фармакологического скрининга с целью создания на их основе эффективных противовоспалительных препаратов.

References

- Karateev AE, Konovalov NN. NSAID-associated disease of the gastrointestinal tract with rheumatism in Russia. *Clinical Medicine*. 2005;5:33-38.
- 2. Nasonov EL. Non-steroidal anti-inflammatory drugs in rheumatology. *Attending physician*. 2006;2:50-53.
- 3. Mashkovskiy MD. Lekarstvennye sredstva [Drugs]. [15-ed., pererab., rev. and add.]. M.: OOO "Izd-vo Novaya volna", 2009;1206.
- Sorotskaya VN, Karateev AE. Gastrointestinal complications as a cause of death in patients with rheumatic diseases. Scientific and Practical rheumatic pathology. 2005;4:34-37.
- Deeks J, Smith LA. Efficacy, tolerability, and upper gastrointestinal safety of celecoxib for treatment of osteoarthritis and rheumatoid arthritis: systemic review of randomized controlled trials. *Brit. Med. J.* 2002;325:619-626.
- Nasonov EL, Karateev AE. Gastric lesions associated with non-steroidal anti-inflammatory drugs. Clinical medicine. 2000;3:4-9.

- Ryabkova A, Shostak N, Malyarova L. Gastrointestinal bleeding caused by non-steroidal anti-inflammatory drugs. *Doctor*. 2004;4:26-27.
- 8. Moore RA, Derry S, Makinson GT, et al. Tolerability and adverse events in clinical trials of celecoxib in osteoarthritis and rheumatoid arthritis: systematic review and meta-analysis of information from company clinical trial reports. *Arthr. Research and Ther.* 2005;7(3):644-665.
- Graham DY, Opekun AR, Wilingham FF, et al. Visible small-intestinal mucosal injury in chronic NSAID users. Clin. Gastroentorol. Hepatol. 2005;3:55-59.
- 10. Chichasova NV. Treatment of osteoarthritis: the effect on cartilage of different anti-inflammatory drugs. *Russian Journal of Medicine*. 2005;13(8):539-542.
- Maradit-Kremers H, Crowson CS, Nicola PJ. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis. A population-based cohort study. *Arthr. Rheum.* 2005;52:402-411.
- 12. RLS Entsyklopedia lekarstv [Encyclopedy of drugs]. 12 ed., Rev. and add. Gl. red. G.L. Vyshkovskiy. M.: RLS, 2005;1440.
- Clegg DO, Reda DJ. Glucosamin, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. *Engl. J. Med.* 2006;354:795-808.
- Laboratory research medicines [ed. O.V. Stefanova]. K.: Avitsena, 2001;433-443.
- Sernov LN, Gatsura VV. Elements of Experimental Pharmacology. Moscow: Medicine, 2000;308-328.
- 16. Singh G. Gastrointestinal complication of prescription and overthe-counter- nonsteroidal anti-inflammatory drugs: a view from the ARAMIS database. *Am. J. Ther.* 2000;7:115-121.
- Minoru T, Shiro U, Hiroyuki K. Inflammatory response to acute myocardial infarction augments neointimal hyperplasia after vascular injury in a remote artery. Arteriosclerosis, Thrombosis and Vasc. Biol. 2006;9:360-365.
- Tripathi KD. Essentials of medical pharmacology.
 5-ed. New Delhi: Jaypee Brothers Medical publishers (P) LTD, 2004;875.