dc.contributor.author |
Iapăscurtă, Victor |
|
dc.contributor.author |
Belîi, Adrian |
|
dc.date.accessioned |
2021-12-06T09:40:45Z |
|
dc.date.available |
2021-12-06T09:40:45Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
IAPĂSCURTĂ, Victor, BELÎI, Adrian. Sepsis: current challenges and new solutions based on modern technologies. A clinical management approach: [poster]. In: Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021: culegere de postere. 2021, p. 117. |
en_US |
dc.identifier.uri |
http://repository.usmf.md/handle/20.500.12710/19153 |
|
dc.description |
Valeriu Ghereg Department of Anesthesiology an Intensive Care no. 1, Nicolae Testemitanu SUMPh,
Institute of Emergency Medicine |
en_US |
dc.description.abstract |
Introduction:
Despite high associated mortality and high treatment costs,
sepsis remains difficult to diagnose. A recent supplement to
sepsis management are systems based on machine learning
(ML). Purpose:
Proof of concept and presentation of a MLbased clinical application for the early
prediction of sepsis. Material and methods:
The data comes from the publicly accessible database Early
Prediction of Sepsis from Clinical Data - the PhysioNet
Computing in Cardiology Challenge 2019 and include 40366
intensive care clinical cases, of which 7.26% are patients with
sepsis, and 92.74% - with other diagnoses. Exploratory data
analysis and data processing are performed in RStudio (R
programming language), and machine learning is based on the
H2O platform (www.h2o.ai). Results:
Based on the processing of
the large data set, an
intelligent system is built,
which allows the prediction
of sepsis 4 hours before the
onset and which can be
delivered as an application
for clinical use. The
performance metrics are:
accuracy - 0.91, specificity -
0.93 and sensitivity - 0.84. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Universitatea de Stat de Medicină și Farmacie ”Nicolae Testemițanu” din Republica Moldova, Institutul de Cardiologie |
en_US |
dc.relation.ispartof |
Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021 |
en_US |
dc.subject |
sepsis |
en_US |
dc.subject |
early diagnosis |
en_US |
dc.subject |
machine learning based systems |
en_US |
dc.subject |
clinical application |
en_US |
dc.subject |
COVID-19 |
en_US |
dc.title |
Sepsis: current challenges and new solutions based on modern technologies. A clinical management approach |
en_US |
dc.type |
Other |
en_US |