| dc.contributor.author | Iapăscurtă, Victor | |
| dc.contributor.author | Belîi, Adrian | |
| dc.date.accessioned | 2021-12-06T09:40:45Z | |
| dc.date.available | 2021-12-06T09:40:45Z | |
| dc.date.issued | 2021 | |
| dc.identifier.citation | IAPĂSCURTĂ, Victor, BELÎI, Adrian. Sepsis: current challenges and new solutions based on modern technologies. A clinical management approach: [poster]. In: Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021: culegere de postere. 2021, p. 117. | en_US |
| dc.identifier.uri | https://repository.usmf.md/handle/20.500.12710/19153 | |
| dc.description | Valeriu Ghereg Department of Anesthesiology an Intensive Care no. 1, Nicolae Testemitanu SUMPh, Institute of Emergency Medicine | en_US |
| dc.description.abstract | Introduction: Despite high associated mortality and high treatment costs, sepsis remains difficult to diagnose. A recent supplement to sepsis management are systems based on machine learning (ML). Purpose: Proof of concept and presentation of a MLbased clinical application for the early prediction of sepsis. Material and methods: The data comes from the publicly accessible database Early Prediction of Sepsis from Clinical Data - the PhysioNet Computing in Cardiology Challenge 2019 and include 40366 intensive care clinical cases, of which 7.26% are patients with sepsis, and 92.74% - with other diagnoses. Exploratory data analysis and data processing are performed in RStudio (R programming language), and machine learning is based on the H2O platform (www.h2o.ai). Results: Based on the processing of the large data set, an intelligent system is built, which allows the prediction of sepsis 4 hours before the onset and which can be delivered as an application for clinical use. The performance metrics are: accuracy - 0.91, specificity - 0.93 and sensitivity - 0.84. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Universitatea de Stat de Medicină și Farmacie ”Nicolae Testemițanu” din Republica Moldova, Institutul de Cardiologie | en_US |
| dc.relation.ispartof | Conferinţa ştiinţifică anuală "Cercetarea în biomedicină și sănătate: calitate, excelență și performanță", 20-22 octombrie 2021 | en_US |
| dc.subject | sepsis | en_US |
| dc.subject | early diagnosis | en_US |
| dc.subject | machine learning based systems | en_US |
| dc.subject | clinical application | en_US |
| dc.subject | COVID-19 | en_US |
| dc.title | Sepsis: current challenges and new solutions based on modern technologies. A clinical management approach | en_US |
| dc.type | Other | en_US |